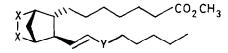
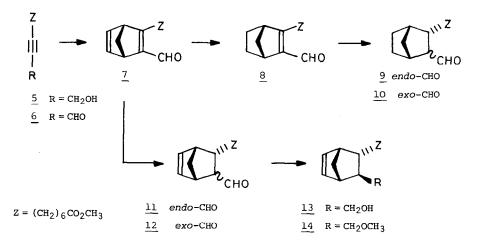

A DIRECT STEREOSPECIFIC SYNTHESIS OF 9,11-ETHENO- AND 9,11-ETHANO-PGH1 DERIVATIVES


- Martin F. Ansell^{*a}, Michael P.L. Caton^b and Peter C. North^a ^a Department of Chemistry, Queen Mary College (University of London), Mile End Road, London El 4NS, England.
- ^D The Research Laboratories, May and Baker Ltd., Dagenham, Essex RM10 7XS, England.
- Abstract: The reaction of methyl 10-oxodec-8-ynoate with cyclopentadiene is reported as the key step in the synthesis of 9,11-etheno- and 9,11-ethano-PGH₁ derivatives.

The pivotal role of the labile prostaglandin endoperoxides in the biosynthesis of the classical prostaglandins, prostacyclin (PGI₂) and the thromboxanes has prompted the synthesis of several more stable analogues.¹ Some of these analogues have shown potential clinical utility in that they possess a highly selective inhibitory action on endoperoxide metabolism, while others exhibit potent agonist activity and thus facilitate pharmacological research in the area.¹


We describe herein a direct, stereospecific synthesis of 9,11-etheno-PGH₁ methyl ester <u>1</u>, a known² specific inhibitor of PGE₁ synthetase. The synthesis avoids the production and subsequent separation of isomeric Diels-Alder adducts; a particularly tedious and scale-limiting feature of the previously reported syntheses.² Also described is the 9,11-ethano-PGH₁ analogue <u>2</u> and a stereoselective synthesis of the intermediates <u>13</u> and <u>14</u> which have recently been prepared non-stereoselectively and subsequently elaborated into PGF₁ α via oxidative cleavage of their olefinic bond.³

 PGH_1

	X-X	Y
1	СН=СН	CHOH
2	$CH_2 - CH_2$	СНОН
3	CH=CH	CO
4	CH ₂ -CH ₂	CO

Alkylation of the dilithio derivative of propargyl alcohol⁴ with 7-bromoheptanoic acid $(0.25 \text{ equivalents in THF-liquid ammonia, } -40^{\circ}, 20h)$, followed by esterification of the crude reaction product (excess CH₃OH, H₂SO4 cat., reflux 3h) afforded the alcohol 5⁵ in 81% overall yield [b.p. 126-130⁰/0.15 mm; NMR/CDC1₃ &4.22 (2H,t, 2Hz, HOCH₂C=C), &3.65 (3H,s, CO₂CH₃); v_{max}/cm⁻¹ 3450 (OH), 2300, 2250 (C=C), 1730 (CO₂CH₃)]. Oxidation of <u>5</u> using pyridinium chlorochromate (1.6 equivalents in CH₂Cl₂, 23^o, 1.5h) or activated manganese dioxide (ca. 10 equivalents in CH_2Cl_2 , 23[°], 5 days) gave the aldehyde 6 in 70% and 88% yield respectively [b.p. 108-112⁰/0.35 mm; NMR δ9.17 (1H, s, CHO), δ3.65 (3H, s, CO₂CH₃); ν_{max} 2300, 2220, (C=C), 1730 (CO₂CH₃), 1670 (CHO); λ_{max} /EtoH 225 nm]. Diels-Alder addition of 6 to a large excess of cyclopentadiene (75[°], 40h) led to the key bicyclic intermediate 7 in 63% yield [NMR δ 9.85 (1H, s, CHO), δ6.75 (2H, m, CH=CH), δ4.00 (1H, bs, →CH), δ3.65 (3H, s, CO₂CH₃), δ3.58 (1H, bs, →CH), δ2.70 (2H, t, 7Hz, C=CCH₂), δ2.32 (2H, t, 7Hz, <u>CH₂CO₂CH₃</u>), δ2.05 (2H, m, <CH₂⇒); ν_{max} 1735 (CO₂CH₃), 1660 (CHO), 1615 (conj.C=C), 1580 (non-conj.C=C); λ_{max} 212, 249, 284 nm; m/e 262.1578 (M^{T})]. Alternatively, the reaction could be catalysed by BF₃.Et₂O (6:cyclopentadiene:BF₃.Et₂O 1:6:0.15, benzene, 0° , 1.5h) to give 7 in 89% yield after chromatography (silica, petrol (b.p. $40-60^{\circ}$) - ether 1:1).

Catalytic hydrogenation of <u>7</u> (Pd cat., THF) using 2 equivalents of hydrogen gave the *endo*, *cis*-aldehyde <u>9</u> in 99% yield [NMR δ 9.85 (1H, d, 3Hz, CHO); ν_{max} 1700 (CHO)]. The stereochemistry of <u>9</u> is expected from the *cis* addition of hydrogen to the least hindered *exo*-face⁶ of the semireduced intermediate <u>8</u> [NMR δ 9.80 (1H, s, CHO), no olefinic H; ν_{max} 1660 (CHO), 1610 (C=C); λ_{max} 261 nm] which could be isolated in 97% yield if the reaction was stopped after the absorption of only one equivalent of hydrogen. Isomerisation of <u>9</u> (10% 2M aqueous HCl in THF, 23[°], 2h) gave a quantitative yield of the *exo*, *trans*-aldehyde <u>10</u> [NMR δ 9.60 (1H, d, 2Hz, CHO); ν_{max} 1710 (CHO); m/e 266.1888 (M⁺)]. Standard elaboration of <u>10</u> using the sodium salt of dimethyl 2-oxoheptylphosphonate (generated from the phosphonate:NaH 1.1:1, THF, 23[°], 2h then adding 0.95 equivalents of <u>10</u>, 23[°], 3h) led to a 66% yield of enone <u>4</u> which was reduced with lithium trisecbutylborohydride (1.15 equivalents in THF, -78° , 0.5h) to give the 9,11-ethano-PGH₁ analogue <u>2</u> as a mixture of isomeric C-15 alcohols in 69% yield [TLC:silica, petrol (b.p. 40-60[°])-ether 1:1, R_f 0.36 and 0.39; m/e 364.2981 (M⁺)].

The synthesis of the 9,11-etheno analogue <u>1</u> necessitated the selective reduction of the conjugated double bond of <u>7</u> in the presence of the non-conjugated double bond, the aldehyde group and the ester group. This highly selective reduction was achieved cleanly by treating a solution of <u>7</u> in DMF with an aqueous solution of chromous sulphate⁷ (5.2 equivalents, 23^o, 7h) which gave a mixture of the *endo,cis*-aldehyde <u>11</u> [NMR $\delta 9.35$ (d, 4Hz, CHO)] and the *exo,trans*-aldehyde <u>12</u> [NMR $\delta 9.76$ (d, 2.5Hz, CHO)] in a ratio of 76:24 in 95% yield.⁸ Epimerisation of this mixture (2% 10M aqueous HCl in THF, 23^o, 16h) afforded a 97% yield of the required *exo*-isomer <u>12</u> [NMR $\delta 9.76$ (lH, d, 2.5Hz, CHO), $\delta 6.15$ (2H, m, CH=CH), $\delta 3.65$ (3H, s, CO₂CH₃) $\delta 3.03$ (lH, bs, $\stackrel{>}{>}$ CH), $\delta 2.88$ (lH, bs, $\stackrel{>}{>}$ CH), $\delta 1.75$ (lH, m, >CHCHO); v_{max} 1730 (CO₂CH₃), 1710 (CHO); m/e 264.1730 (M[±])]. The stereochemistry of <u>12</u> was verified by ¹H NMR decoupling experiments,⁹ by independent synthesis¹⁰ and by hydrogenation (Pd cat., THF) which gave a quantitative yield of the saturated aldehyde <u>10</u> identical to that prepared above. Elaboration of <u>12</u> as described gave the enone <u>3</u> (65%) which was reduced to the desired analogue <u>1</u> as a mixture of isomeric C-15 alcohols in 74% yield [TLC:silica, petrol (b.p. 40-60^o)-ether 1:1, R_f 0.33 and 0.38, m/e 362.2808 (M[±])].

Reduction of <u>12</u> (7.5 equivalents of NaBH₄, CH₃OH, O^o, 0.5h) gave a 98% yield of the alcohol <u>13</u> [NMR δ 6.05 (2H, m, CH=CH), δ 3.68 (2H, m, <u>CH</u>₂OH), δ 3.65 (3H, s, CO₂CH₃), δ 2.71 (2H, bs, ;CH); v_{max} 3450 (OH), 1730 (CO₂CH₃); m/e 266.1877 (M⁺)] which on methylation (2 equivalents of NaH, DMSO then 20 equivalents of CH₃I, 23^o, 15h) afforded the methoxy derivative <u>14</u> in 87% yield [NMR δ 3.34 (3H, s, CH₂O<u>CH</u>₃)]. Both intermediates <u>13</u> and <u>14</u> are useful starting materials for the stereospecific synthesis of the 1-series prostaglandins and their analogues.³

Compounds <u>1</u> to <u>4</u>, and other analogues derived from intermediates <u>10</u> and <u>12</u>, exhibit an interesting biological profile which will be reported in a separate note.¹¹

REFERENCES AND NOTES

- For a review of analogues and their biological activity see: K.C. Nicolaou, G.P. Gasic and W.E. Barnette, Angew. Chem. Int. Ed., 17, 293 (1978). See also T.A. Eggelte, H. de Koning and E.O. Huisman, J.C.S. Perkin I, 980 (1978); E.J. Corey, H. Niwa, M. Bloom and P.W. Ramwell, Tetrahedron Letters, 671 (1979); S. Kam, P.S. Portoghese, J.M. Gerrard and E.W. Dunham, J. Med. Chem., 22, 1402 (1979).
- (a) P. Wlodawer, B. Samuelsson, S.M. Albonico and E.J. Corey, J. Amer. Chem. Soc., 93, 2815 (1971);
 (b) J. Katsube, H. Shimomura and M. Matsui, Agr. Biol. Chem., 36, 1997 (1972);
 (c) S. Ranganathan, D. Ranganathan and M.M. Mehrotra, Tetrahedron Letters, 1851 (1978).

- 3. (a) D. Ranganathan, S. Ranganathan and M.M. Mehrotra, Tetrahedron, 36, 1869 (1980).
 (b) J. Katsube, M. Shimomura and M. Matsui, Agr. Biol. Chem., 42, 131 (1978).
- 4. D.E. Ames, A.N. Covell and T.G. Goodburn, J. Chem. Soc., 5889 (1963).
- 5. All compounds reported herein have been characterised by 100 MHz PMR, IR, UV (where applicable) and high resolution mass spectra on chromatographically homogeneous samples.
- See for example E.J. Corey, R. Hartman and P.A. Vatakencherry, J. Amer. Chem. Soc., 84, 2611 (1962) and references cited therein.
- 7. A. Zurqiyah and C.E. Castro, Organic Synthesis, 49, 98.
- Hydrogenation of this mixture gave the same ratio of the saturated aldehydes 9 and 10 respectively which could be isomerised as described to give 10 exclusively.
- 9. Irradiation of H_b (§1.75) collapsed the H_a doublet into a singlet, thus confirming the assignment of H_b . The unusually high field shift of H_b is due to shielding by the olefinic bond, an effect only possible when H_b is endo. Irradiation of H_b confirmed $J_{bc} = 0$ indicative of endo- H_b . Irradiation of H_a revealed $J_{bd} = 5$ Hz, typical of a trans- H_b - H_d coupling; see J.C. Davis Jr. and T.V. van Auken, J. Amer. Chem. Soc., 87, 3900 (1965).
- 10. Treatment of the aldehyde <u>6</u> in DMF with 2 equivalents of aqueous chromous sulphate (23^o, 25 min) afforded trans-methyl 10-oxodec-8-enoate in 95% yield [NMR δ 9.50 (1H, d, 8Hz, CHO), δ 6.85 and δ 6.08 (2H, m, OHCCH=CH-, 16 Hz trans-coupling present); ν_{max} 1730 (CO₂CH₃), 1685 (CHO), 1635 (C=C), 990 (trans-CH=CH); λ_{max} 222 nm]. Reaction of this trans-enal with excess cyclopentadiene gave a mixture of two isomeric trans-adducts which were separated chromatographically (TLC, multiple development^{3a}). The exo-formyl isomer so obtained was spectroscopically and chromatographically identical to <u>12</u> prepared stereoselectively via the adduct 7.
- 11. The financial support of a Science Research Council CASE award to P.C. North is gratefully acknowledged.

(Received in UK 5 February 1981)